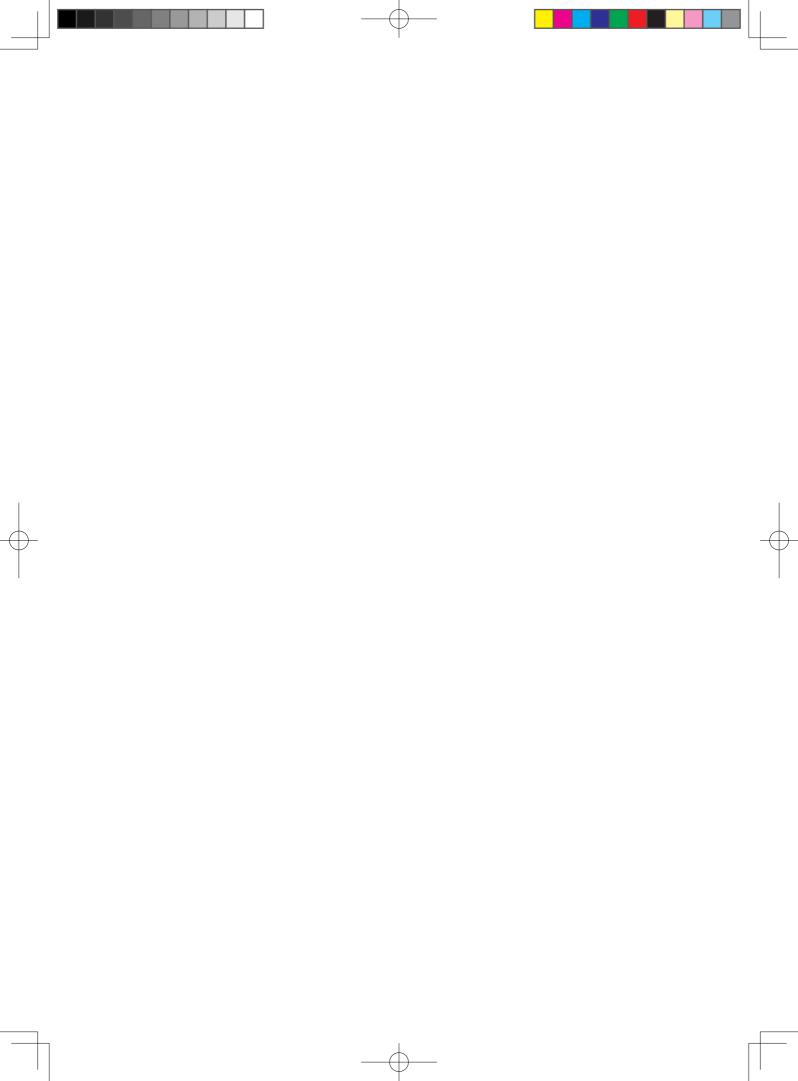

初中数学公式手册



目录

Contents

01. 绝对值性质	01
02. 有理数的运算律	01
03. 添括号法则	01
04. 科学记数法	02
05. 等式性质	02
06. 角度换算公式	02
07. 不等式性质	02
08. 不等式的解集	03
09. 不等式组的解集	03
10. 坐标对称公式	04
11. 坐标系中常见公式	04
12. 幂的运算	04
13. 乘法公式	05
14. 因式分解	05
15. 分式性质	05

16. 分式运算
17. 二次根式的性质
18. 二次根式的运算
19. 勾股定理
20. 多边形内外角和
21. 一次函数图象性质
22. 平均数
23. 方差
24. 一元二次方程求根公式
25. 二次函数的性质
26. 抛物线与 x 轴的交点和一元二次方程的根的关系
27. 弧长及扇形面积
28. 概率
29. 反比例函数性质
30. 反比例函数中 k 的几何意义10
31. 锐角三角函数
32. 特殊角的三角函数值

01 绝对值性质

文字描述	符号描述
一个正数的绝对值是它本身	如果 $a > 0$,那么 $ a = a$
一个负数的绝对值是它的相反数	如果 $a < 0$,那么 $ a = -a$
0 的绝对值是 0	如果 $a=0$,那么 $ a =0$

02 有理数的运算律

加计运符体	交换律	a+b=b+a
加法运算律	结合律	(a+b)+c=a+(b+c)
	交换律	ab = ba
乘法 运算律	结合律	(ab)c = a(bc)
	分配律	a(b+c) = ab + ac

03 添括号法则

添括号	法则	如果括号前面是正号,括到括号里的各项都不变符号; 如果括号前面是负号,括到括号里的各项都改变符号。	a+b+c = a+(b+c) $a-b-c = a-(b+c)$

04 科学记数法

用科学记数法表示数	
绝对值大于 10 的数(a×10")	n 是原数的整数数位减 1 得到的正整数
绝对值小于 1 的数 ($a \times 10^{-n}$)	n 是从小数点后开始到第一个不是 0 的数为止的数的个数

95 等式性质

性质 1	等式两边加(或减)同一个数(或式子), 结果仍相等	若 a = b,则 a ± c = b ± c
性质 2	等式两边乘同一个数,或除以同一个不为 0 的数,结果仍相等	若 $a = b$,则 $ac = bc$; $\frac{a}{c} = \frac{b}{c} (c \neq 0)$

06 角度换算公式

度量 1° = 60′, 1′ = 60″(°、′、″分别是: 度、分、秒)

07 不等式性质

性质1	不等式两边加(或减)同一个数(或式子),不等号的方向不变	若 a > b, 则 a±c > b±c
性质 2	不等式两边乘(或除以)同一个正数,不 等号的方向不变	若 $a > b$, $c > 0$, 则 $ac > bc$, $\frac{a}{c} > \frac{b}{c}$
性质3	不等式两边乘(或除以)同一个负数,不 等号的方向改变	若 $a > b$, $c < 0$, 则 $ac < bc$, $\frac{a}{c} < \frac{b}{c}$

08 不等式的解集

	x > a	a
一元一次不等式的解集的表示	<i>x</i> < <i>a</i>	a ·
方法	$x \ge a$	a
	$x \leq a$	a a

09 不等式组的解集

不等式组 (a < b)	在数轴上表示	解集	口诀
$\begin{cases} x > a \\ x > b \end{cases}$	a b b	<i>x</i> > <i>b</i>	同大取大
$\begin{cases} x < a \\ x < b \end{cases}$	\overrightarrow{a} \overrightarrow{b}	x < a	同小取小
$\begin{cases} x > a \\ x < b \end{cases}$	\overrightarrow{a} \overrightarrow{b}	a < x < b	大小小大中间找
$\begin{cases} x < a \\ x > b \end{cases}$	\overrightarrow{a} \overrightarrow{b}	无解	大大小小找不到

10 坐标对称公式

	点 (x,y) 关于 x 轴对称的点的坐标是 $(x,-y)$
坐标与 对称	点 (x,y) 关于 y 轴对称的点的坐标是 $(-x,y)$
	点 (x,y) 关于原点 O 的对称点的坐标是 $(-x,-y)$

11 坐标系中常见公式

	点 $P(x,y)$ 到 x 轴的距离: $ y $
	点 $P(x,y)$ 到 y 轴的距离: $ x $
坐标与 距离	点 $P(x,y)$ 到原点的距离: $\sqrt{x^2+y^2}$
#E ~J	任意两点的距离公式: $\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$
	中点坐标公式: $(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2})$

12 幂的运算

同底数幂 的乘法	同底数幂相乘,底数不变,指数相加	$a^m \cdot a^n = a^{m+n}$ (m, n 为正整数)
幂的乘方	幂的乘方,底数不变,指数相乘	$(a^m)^n = a^{mn} (m, n$ 为正整数)
积的乘方	积的乘方,等于把积的每一个因式分别 乘方,再把所得的幂相乘	$(ab)^n = a^n b^n (n 为正整数)$
同底数幂 的除法	同底数幂相除,底数不变,指数相减	$a^m \div a^n = a^{m-n} (a \neq 0, m, n$ 为正整数, 并且 $m > n$)
0 次幂	任何不等于 0 的数的 0 次幂都等于 1	$a^0 = 1(a \neq 0)$

11 乘法公式

平方差公式:

$$(a+b)(a-b) = a^2 - b^2.$$

两个数的和与这两个数的差的积,等于这两个数的平方差.这个公式叫做平方差公式.

完全平方公式:

$$(a+b)^2 = a^2 + 2ab + b^2 ,$$

$$(a-b)^2 = a^2 - 2ab + b^2 .$$

两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们积的2倍.这两个公式叫 做完全平方公式

14 因式分解

常用

提公因式法: pa + pb + pc = p(a+b+c)

方法

公式法:
$$a^2 - b^2 = (a+b)(a-b)$$
;
 $a^2 + 2ab + b^2 = (a+b)^2$; $a^2 - 2ab + b^2 = (a-b)^2$

15 分式性质

分式的分子与分母乘(或除以)同一个不等于0的整式,分式的值不变.

用式子表示为: $\frac{A}{B} = \frac{A \cdot C}{B \cdot C}$ 或 $\frac{A}{B} = \frac{A \div C}{B \div C} (C \neq 0)$.

16 分式运算

乘法法则	分式乘分式,用分子的积作为积的分子,分母的积作为积的分母. $\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}$.
除法法则	分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘. $\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c} = \frac{a \cdot d}{b \cdot c} .$

分式的乘方	分式乘方要把分子、分母分别乘方. $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$ (n 为正整数).
负整数指数幂	$a^{-n} = \frac{1}{a^n} (a \neq 0, n$ 为正整数)

同分母分式相加减	分母不变,把分子相加减	$\frac{a}{c} \pm \frac{b}{c} = \frac{a \pm b}{c}$
异分母分式相加减	先通分,变为同分母的分式, 再加减	$\frac{a}{b} \pm \frac{c}{d} = \frac{ad}{bd} \pm \frac{bc}{bd} = \frac{ad \pm bc}{bd}$

17 二次根式的性质

$$(1) (\sqrt{a})^2 = a; (2) \sqrt{a^2} = |a| = \begin{cases} a(a > 0) \\ 0(a = 0) \\ -a(a < 0) \end{cases} .$$

18 二次根式的运算

二次根式 的乘法法则	$\sqrt{a}\cdot\sqrt{b}=\sqrt{ab}\left(a\!\geqslant\!0,b\!\geqslant\!0 ight)$
二次根式 的除法法则	$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}} \left(a \ge 0, b > 0 \right)$

19 勾股定理

勾股定理	如果直角三角形的两条直角边长分别为 a 、 b ,斜边长为 c ,那么 $a^2+b^2=c^2$.	
勾股定理 的逆定理	如果三角形的三边长 a 、 b 、 c ,满足 $a^2+b^2=c^2$,那么这个三角形是直角三角形	

20 多边形内外角和

内角和	n边形内角和等于(n-2)×180°(n≥3且为正整数)
外角和	多边形的外角和等于360°

一次函数图象性质

y = kx + b	经过象限	升降趋势	增减性
k > 0, $b > 0$	-, <u>=</u> , <u>=</u>	从左向右上升	y 随着 x 的增大而增大
k > 0, $b < 0$	一、三、四	外在凹石工开	
k < 0, $b > 0$	一、二、四	从左向右下降	y随着x的增大而减小
k < 0, $b < 0$	二、三、四	外在凹位 下降	

平均数

名称	公式
平均数	$\overline{x} = \frac{1}{n} (x_1 + x_2 + \dots + x_n)$
加权平均数	$\bar{x} = \frac{x_1 k_1 + x_2 k_2 + \dots + x_n k_n}{k_1 + k_2 + \dots + k_n}$ (x_1 , x_2 , \dots , x_n 的权分别是 k_1 , k_2 , \dots , k_n)

方差

方差:
$$s^2 = \frac{1}{n} \left[\left(x_1 - \overline{x} \right)^2 + \left(x_2 - \overline{x} \right)^2 + \dots + \left(x_n - \overline{x} \right)^2 \right]$$

方差越大,数据的波动越大;方差越小,数据的波动越小.

24 一元二次方程求根公式

关于 x 的一元二次方程 $ax^2 + bx + c = 0$ $(a \ne 0)$ 的解: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $(b^2 - 4ac \ge 0)$

25 二次函数的性质

1	性质	$y = ax^2$	$y = ax^2 + k$	$y = a(x-h)^2$	$y = a(x-h)^2 + k$	$y = ax^2 + bx + c$
N	对称轴 y轴		x = h		$x = -\frac{b}{2a}$	
		(0,0)	(0,k)	(h,0)	(h,k)	$(-\frac{b}{2a}, \frac{4ac - b^2}{4a})$
顶点		,顶点是最高点,	此时 y 有最大值.			
增	a > 0	在对称轴的左边, y 随 x 的增大而减小;在对称轴的右边, y 随 x 的增大而增大.				
性	a < 0	在对称轴的左边, y 随 x 的增大而增大; 在对称轴的右边, y 随 x 的增大而减小.				

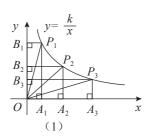
26 抛物线与 x 轴的交点和一元二次方程的根的关系

b^2-4ac	抛物线 y = ax² + bx + c 与 x 轴交点个数	一元二次方程 $ax^2 + bx + c = 0$ 的解
$b^2 - 4ac > 0$	两个公共点	两个不相等的实数根
$b^2 - 4ac = 0$	一个公共点	两个相等的实数根
$b^2 - 4ac < 0$	无	没有实数根

27 弧长及扇形面积

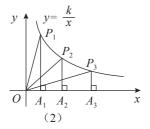
名称	公式
n°的圆心角所对的弧长	$l = \frac{n\pi R}{180}$
圆心角为 n° 的扇形面积	$S_{\text{MHF}} = \frac{n\pi R^2}{360} = \frac{1}{2}lR$
圆锥的侧面积	$S = \pi r l$
圆锥的全面积	$S = \pi r l + \pi r^2$

28 概率

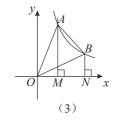

	当 A 必然事件时, $P(A)=1$
性质	当 A 不可能事件时, $P(A)=0$
	当 A 不确定事件时, $0 < P(A) < 1$
公式	一般地,如果在一次试验中,有 n 种可能的结果,并且它们发生的可能性都相等, 事件 A 包括其中的 m 种结果,那么事件 A 发生的概率 $P(A) = \frac{m}{n}$

29 反比例函数性质

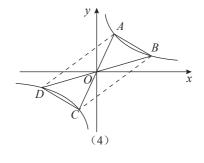
$y = \frac{k}{x}$	图象的位置	性质
k > 0	双曲线的两支分别位于 第一、三象限	在每个象限内, y 随 x 的增大而减小
k < 0	双曲线的两支分别位于 第二、四象限	在每个象限内, y 随 x 的增大而增大

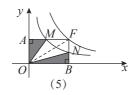

反比例函数中 k 的几何意义

反比例函数 $y = \frac{k}{x} (k)$ 为常数, $k \neq 0$)图象上的任意一点的横纵坐标之积等于|k|.



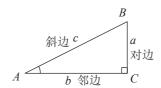
$$S_{\mathfrak{B}\mathcal{B}A_{1}P_{1}B_{1}O} = S_{\mathfrak{B}\mathcal{B}A_{2}P_{2}B_{2}O}$$


$$= S_{\mathfrak{B}\mathcal{B}A_{3}P_{3}B_{3}O} = |k|$$


$$\begin{split} S_{\triangle P_1 A_1 O} &= S_{\triangle P_2 A_2 O} \\ &= S_{\triangle P_3 A_3 O} = \frac{\mid k \mid}{2} \end{split}$$

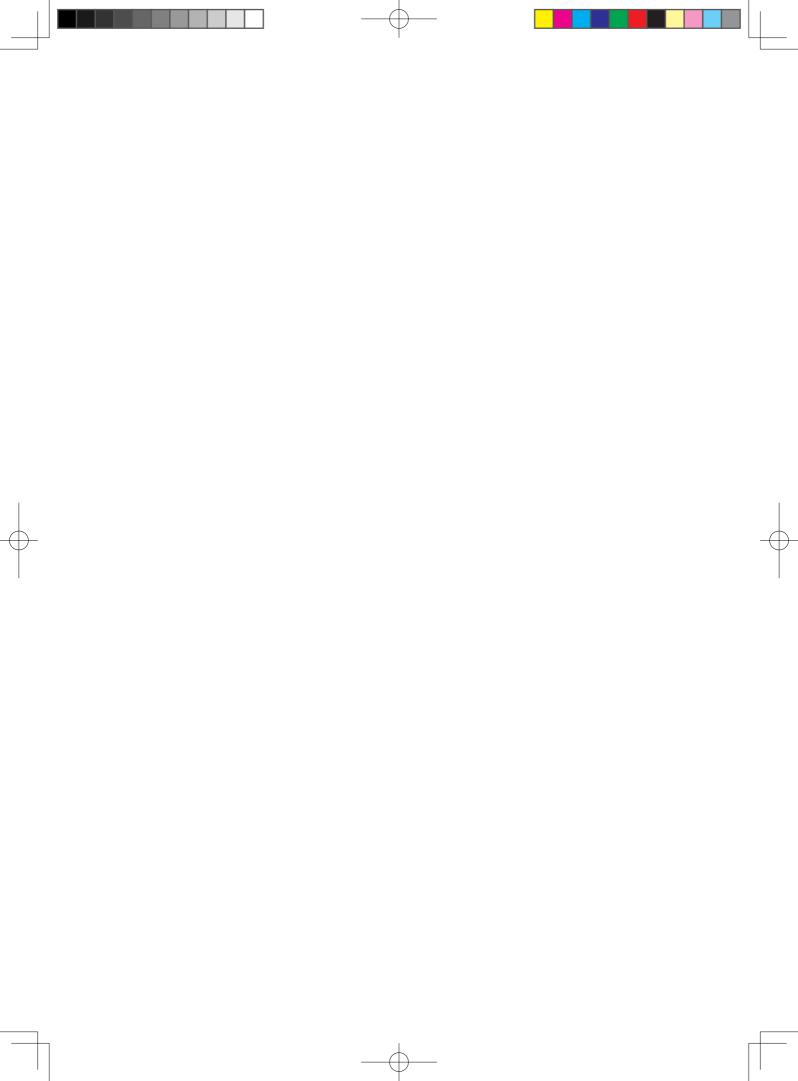
$$S_{\triangle AOB} = S_{\# \Re ABNM}$$

$$S_{$$
四边形 $ABCD}=4S_{\triangle AOB}$


- ① $S_1 = S_2$;
- ② $S_{\text{\tiny MJDRMONP}}$ 的值为定值;
- ③当M为AP中点,则N必为PB中点;
- ④当M为AP的n等分点时,N必为PB的n等分点.

锐角三角函数

正弦:
$$\sin A = \frac{\angle A$$
的对边 $= \frac{a}{c}$;


余弦:
$$\cos A = \frac{\angle A$$
的邻边 $= \frac{b}{c}$;

正切:
$$\tan A = \frac{\angle A$$
的对边 $= \frac{a}{b}$.

32 特殊角的三角函数值

锐角 α 三角函数	30°	45°	60°
$\sin lpha$	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$
$\cos \alpha$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$
an lpha	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$

